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Abstract

A generalization of the entropic formulation of the Uncertainty Principle of Quantum Me-
chanics is considered with the introduction of the g-entropies recently proposed by Tsallis.
The concomitant generalized measure is illustrated for the case of phase and number opera-
tors in Quantum Optics. Interesting results are obtained when making use of g-entropies as
the basis for constructing generalized entropic uncertainty measures.

1 Introduction
The Uncertainty Principle (UP) can be stated quantitatively in the following fashion
U(A Bip) > B(A, B) (1.1)

where U is an estimation of the uncertainty in the result of a simultaneous measurement of two
incompatible observables A and B, when the system is in a state [1). What the UP asserts is that
such an estimation is limited by an irreducible lower bound, the infimum B, which merely depends
on both operators. U must attain a fixed minimum value (Up,in = 0) if and only if |3) is a common
eigenstate of A and B, and B vanishes when the observables share at least one eigenvector.

The extension of Heisenberg’s inequality to describe the UP for arbitrary pairs of operators
(when their commutator is not a c-number) has been criticized because its r.h.s. is not a fixed
lower bound [1]. Much effort has been devoted to present quantitative formulations of the UP
(see, for example, refs. [1]-[8]). A central idea underlying these works is that the most natural
measure of uncertainty is precisely the missing information [9] that remains once a measurement
is made.

Deutsch first proposed [1] the nse of Shannon’s information-theory entropy {9] (S({p:}) =
- Zﬁl pi ln py, for any probability distribution {p;}) to measure uncertainty, in the following way

U,(/i, B;?/)) = S(/i;’l/)) + .S'(Bu/)) (1.2)

with the entropies calculated for the distributions {p; ; = [(a:]$)[*} and {pg ; = [(b;]¥)|*}, which
correspond to the projections of 1) onto the bases of eigenvectors of A and B, respectively. With
reference to an A-measurement, a system in a state with a probability distribution {&;,} has a
“minimum lack of information™ (or “maximmun knowledge”), and then S(/i;?/)) = Sun = 0. On
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the other hand, a uniform distribution {1/N} characterizes a situation of “maximum ignorance”,
with S(A;¥) = Smax = In V.
It has been shown [1] that U, satisfies

E

1+c¢

U,(fi, [3; ) > 21n (1.3)
with ¢ = supy; [(a;[b;)|. It was conjectured first by Kraus [3] and demonstrated later by Maassen
and Uffink [4] that a better bound can be given,

U(A,B;p) > 2 1.1% (1.4)

Kraus specifically considered having two complementary observables: exact knowledge of the
measured value of one of them implies maximum uncertainty in the other measurement, and
consequently |[(a;b;)| = 1/V/N, for all i,j = 1,..., N.

It seems natural to look for alternative descriptions of the UP expressed in entropic terms.
In Section 2, we analyze the quantitative formulation of uncertainty in the spirit of Information
Theory, with the aid of the recently introduced Tsallis’ entropy [10], which is regarded as infor-
mation measure [11]. We illustrate with a simple example, namely the phase-number uncertainty
measures within the Pegg—Barnett formalism, and outline some conclusions in Section 3.

2 Tsallis’ entropy as measure of uncertainty

A quite interesting generalization of the conventional entropy form has been recently advanced by
Tsallis [10]. For any normalized probability distribution {p;}, Tsallis’ entropy reads

B AT A
Syliy) = L Dm ! 1)

where ¢ is any real number, characterizing a particular statistics. (The sum must be carried out
over non-zero probabilities.) The ¢ — 1 limit of (2.1) yields the Boltzmann-Shannon’s logarithmic
expression.

The physics is an extensive one only for ¢ = 1 [10, 12]. Tsallis’ entropy is related to the more
familiar Rényi’s entropy by SF = (In[1+4(1-¢)S,])/(1—¢). A crucial difference distinguishes these
two alternative entropies, however. Tsallis’ entropy always possesses a definite concavity, being a
concave (convex) function of the probabilities for ¢ > 0 (¢ < 0), which is not the case for Rényi’s
one. It is thus the former the generalized entropy recently employed in several distinct physical
contexts. The generalized statistics associated to (2.1) has been shown to satisfy appropriate
forms of Ehrenfest theorem [11], Jaynes’ information-theory duality relations [11], von Neumann's
equation [13], and the fluctuation—dissipation theorem [14, 15], among others. H-theorems and
irreversibility have heen in this connection also discussed [16, 17], as well as a possible connec-
tion with quantum groups [I18], for instance. This nonextensive statistics has allowed, within an
astrophysical context, to overcome the inability of the conventional, extensive one, to adequately
deal (without infinities) with self-gravitating stellar systems, in what constituted the first physical
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application of the ¢ # I-theory [19]. A second application refers to Lévy flights, relevant for a
variety of systems [20].

Some properties of the g-entropies are: i) S, > 0 for any ¢ and {p;}, with S; = 0 for p; = iio
(certainty); ii) S, reaches the extreme value (1 — N'-9)/(q — 1) for every q¢ and p; = 1/N
(equiprobability); iii) S, is a non-increasing function of ¢ > 0 for each {pi}; iv) For two inde-
pendent distributions {p;} and {p}} (such that the joint probability is pi; = p; p};), it verifies that
So({pi}) = Sol{ni]) + o) + (1 = 9) Sy ({pid) Sl {2})).

We consider the new entropy as measure of uncertainty. Let us recall first that Heisenberg’s
relation, as well as the entropic relations given above, refer to independent measurements. of
the observables A and B on different microsystems in the same state [1p). The UP states that
the probability distributions obtained when [#) is projected on the corresponding eigenbases
cannot be both arbitrarily peaked, given operators A and B “sufficiently non-commuting” [3].
The uncertainty measure appearing in eq. (1.2) takes into account the total information entropy
associated to two independent probability distributions. Shannon’s entropy is additive and U; 1s
just 5(/1) + S(B) We introdice now Tsallis’ entropy to measure the amount of uncertainty, in
the same spirit. The generalized expression reads

U,(A, Biy) = S, (A ) + S'q(B; )+ (1 —q) S,(A; ) .S',,(B; 1)) (2.2)
where ¢ is a positive parameter and the entropies are given by (2.1) for the probability sets
{pi;} and {pg ;}. It is immediately seen that U, > 0, with ¢, = 0 if and only if |#) is a common

eigenstate of A and B. Besides this, U, never exceeds (1— N?(1-9)/(qg—1). (We mention that these
ideas can be extended to deal with pairs of observables with continuous spectra. However, one
must be careful when defining the (generalized) information entropy for non-discrete distributions

{p(x)} 17, 21].)

A (weak) bound can be imposed on (2.2), namely

. 1 9 2(1-g)
. > - K
u,,(A, B;y) > P 1 (1 n (:) (2.3)

which holds for any ¢ > 0. By recourse to Riesz’ theorem (as used in ref. [4]), it can be demon-
strated that a better bonnd for i, exists, at least in the region 1/2 < ¢ < 1:

- . 1 1 2(1-q)
U (A, Byy) > qu (l — (;) ) (2.4)

3 Example and conclusions

We shall apply our ideas to the phase and number operators in Quantum Optics. The treatment
of optical states can be accomplished by recourse to the Pegg-Barnett (PB) formalism [22]. This
implies working in a finite but arbitrarily large (s + 1)-dimensional Hilbert space H**! spanned
by the number states |04, |1)4,...,|s)s, and taking the limit s — oo at the end. The Hermitian
phase operator is defined as

. o ] N
¢ = Z gm Iam)s s(gmla '0m>a = emom|n>, (31)
mz=0 3 + l ngo
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The corresponding eigenvalues are 8,, = 0o + 2mm/(s + 1). (Hereafter, the arbitrary reference
phase 8y will be set equal to 0.) The phase and number operators, ¢ and N, are mutually
complementary, with overlap ¢ = 1/v/s + 1. o

It is found that, for a system in a state |} € H*+', U (P, N;9,3) > In(s + 1) which diverges
when s — oo. In order to extract some information out of this relation, Abe examined [5] the
entropy differences from a certain reference state before going to the infinite-s limit. Number and
phase eigenstates (which actually saturate that inequality) were chosen. Within the framework
of Tsallis’ information entropy, for a given ¢ > 0 and a state |,,),, for instance, the entropies are
given by S, ((I) Om,s) =0 and S (N 0,n,8) = (1 = (s+1)'79)/(q = 1). Consequently,

lim U, (D, N;0,,,5) = (3.2)

§—00

q+l" if ¢q>1

{oo, if 0<g<l1

The same obtains for a number eigenstate. We stress that, considering generalized information

entropies with ¢ > 1, the divergence in the uncertainty for number or phase states is removed.
Let us consider the generalized entropic uncertainty measures for a system prepared in a phase

coherent state (PCS). These states, recently found by Knan and Chen [21], are given by

1 ""l
=~ 2 v

where Z = 1/2r /(s + 1) z is a complex number and the normalizing function is given by e,(z) =
Y ov=o™/nl. The projections of a PB PCS on phase and number eigenstates are

(3.3)

1 |:;|2m
A

—_ 2 =
Pm = Is(omlz)sl - eg(lfl')) m!

and
s ~k '—mok

D

P = ls(nl2)]” =

(¢+l)e, (121?)

x'esl)ectix{ely, with m,n =0,1,...,s.

The @ — N Heisenberg’s inequality has been discussed for the s = 1 case [21]. We have analyzed
the shapes of the phase and number g-entropies, for many different values of 5. Within a given
statistical frame of index ¢, the entropies Sy(b; 2, 5) and S,(N; z,s), will depend on both |z] and
s. The complementariness of ® and N is clearly seen. The phase entropy vanishes both for |zl =0
(as it should for the vacuum phase state |0g)) and for |z| sufficiently large. The number entropy
has a minimum in the intermediate region (those PCS for which the entropy approach zero can
be interpreted as “number-like” states). Those states are also of relatively low uncertainty. It can
be seen that (1 — (s + 1)'77)/(q — 1) is a lower bound for the generalized uncertainty measure
(see eq. (2.4)). This is obtained for arbitrary size of the PB space, s, or statistical parameter, q.
Fig. 1 displays the g-entropies and the uncertainty U (<I> N;z, s) as a function of |z|, assuming
particular values for both ¢ and s.

334



T v T T T
25 —(\ ............................... .
rd - = AY
20 o // \\ -
I, ' a
7 v
o %\
‘ Y
15F FEN -
I' ‘\
! : ' q=1.25
10 AN s=50 .
, N . - - - - Phase entropy
, N Number entropy
05} ' Tee - Uncertainty
: Tl -
, Tl
|
]
0 0 —l’ 1 1 1 7
0 20 40 60 80
F4

FIG. 1. Phase and number g-entropies and generalized uncertainty measure, for a

PB PCS, as a function of coherence.
As a conclusion, generalized entropies recently introduced by Tsallis have been discussed in

order to establish general uncertainty relations for the measurement of two quantum incompatible
observables. Number and phase operators within the Pegg-Barnett formalism have been investi-
gated in some detail. Interesting results are obtained when making use of g-entropies as the basis

for constructing generalized entropic uncertainty measures.
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